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CENTRIFUGAL WAVES IN A PROGRESSIVELY ROTATING FLUID FLOW* 

R.A. BRAZHE 

It is shown that it is possible for solitons to arise in the progressively rotating flow 

of an ideal incompressible fluid. Such a motion is characteristic for vertical MHDgenerators 

and small-scale atmospheric vortices. 

1. Equations of motion and boundary conditions. Let a progressively rotational 

fluid flow be created in a rigid tube with internal radius R by means of a tangential input 

and pressure drop. This leads to the formation in the tube of a cylindrical cavity of radius 

To filled with air or, if the tube does not communicate with the atmosphere, the saturated 

vapour of the fluid (Fig.1). Any 
along the axis of the tube in the 

Fig.1 

perturbation q(z,t) of the radius of the cavitymaypropagate 

form of plane waves. In future, we shall assume that the 

maximum amplitude of the perturbation, a, is small com- 
pared with h, the thickness of the fluid layer, and 2, the 

length of the perturbation is, in the other hand, large 

compared with h. This leads to the following parameters 
being small: e= a/h and 15-h/l. Here the thickness of the 

fluid layer is taken to be small compared with the radius 

of the tube, so that h = (.F ~ ro2)!(2ro). 

Because of the axial symmetry of the fluid boundary 

(but not of the flow), in a cylindrical coordinate system 
the components of r, thevelocity vector of the fluid, 
depend only on the distance r from the flow axis, the z 

coordinate and t, the time. The vorticity o of the flow 

is taken to be constant along the tube and directed along 

the z axis, so that there is no angular dependence. 
Assuming that the fluid is incompressible, we can introduce the vector potential A such 

that r = rotA, and reduce the problem to solving Poisson's equation AA= -CL 

On the free surface of the fluid rl z ~O--~(z, t) (here and below the index 1 refers to 

quantities that are calculated on the free surface) the kinematic boundary condition can be 

written in the form 

The dynamic boundary condition is obtained from the Euler equation by substituting ex- 
pressions for the pressure in the rotating fluid at an arbitrary point of the free surface 
into it 

1'1 I-0 L 'i&W (r<,~ = - r1-Z) 

where M = v,g, is the constant specific angular momentum of the fluid. The variation in the 

fluid pressure on the free surface caused by its perturbation (with rl-_rO) is equal to 
dp, -= pvq2ro-‘dq. Consequently, the radial and azimuthal projections of the Euler equation express 
the constant nature of the radial and azimuthal components of the fluid flow velocity on the 
boundary with the gas vortex, and the axial, projection gives the dynamical boundary condition: 
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(1.2) 

The uI1 and vzl that occur in the boundary conditions (1.1) and (1.2) are determined 

by the component A, of the potential, which obeys the Laplace equation. Bearing in mind the 

thinness of the fluid layer, we can write the solution to this equation in the form 

AgO., 2, t) = 2 (Rz - +‘A (z t) rc,' > (1.3) 

n=o 

Substituting (1.3) into the Laplace equation and separating the terms according to the 

powers of (P - r2), we obtain a recurrence relation 

A 
1 a=A 

$,,+I =_s_( _-J-l 
4(n i_ 1) a22 

I_ w= (1.4) 

It follows from the conditions on the wall of the tube that aA,,iaz= 0, which cannot be 

said about the higher-order derivatives.. Thus, according to (1.3) we have the following on 

the free fluid surface: 

A,, = Ace + ‘/r (R* - 9) f t- ‘132 (R* - r# ’ - _&p&+... (1.5) 

f +, 2) = aZAQo (2, t)/az* 

2. The linear approximation. We linearize the boundary conditions (l.l), (1.2), and 

omit the terms that are quadratic in the variable quantities: 

Substituting the first terms of the expansions for + and uzl according to (1.5) into 

the left-hand sides of these expressions and then eliminating f, we find that the radial 

mixing T) of the free fluid surface obeys a linear wave equation: 

ay/atz - c,v+jia22 = 0, c0 = rO-bQ 1/(Kro2)/2 

where cO is the velocity ofthenon-dispersive centrifugal wave of the form 

q = a exp [i (ot i kz)], o = c,k 

that propagates over the surface of the progressively rotating flow. 

The result we have obtained is in complete agreement with the conclusion reached in /l/. 

3. Centrifugal solitons. Introducing the dimensionless variables 

z' = z/l, t' = c,tll, 7j' = 7)/n, I+,' = VZI/(ECO) 

VT: = u,,/(E~c,,), f' = r~/(Zec,), A,,' = r&,/(Zec,P) 

and setting Ra - r12 = (R* - roa)(i + eq’), we can rewrite the boundary conditions (1.1) and (1.2), 

up to the first non-vanishing,order in E and 6, as 

(3.1) 

(3.2) 

We can find q' from (3.1) and (3.2) by the method of perturbations /2/. To this end, we 

introduce an expansion of f’ in the small parameters f'= q'+ ef(')+?~~f(~' into them, and keep the 

terms up to the first order in 'e and 6*. Then, if we put together the equations so formed and 

take into account that af@)lat’ = af(*)/dd (n- 1,2) to the required accuracy, we obtain the following 

expression: 

Since the parameters e and 6 are independent, this coefficients must be equal to zero. 

Taking account of this, we rewrite (3.1) in the form 

(5.3) 
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Returning to dimensional variables and using the transformation : 
can reduce (3.3) to the Korteveg-de Vries equation 

IIT -I c,&'grl: ’ “c,,h2qFjg ” 
the solution of which has the following form in z,t variables: 

where 'lo is the amplitude, determined by the initial conditions, of the soliton, I, is its width 

and V is the velocity of propagation. 

Thus, in progressively rotating fluid flow, the centrifugal waves propagating onits free 

surface may take the form of solitons at a fairly large oscillation amplitude. These solitons 

are similar to the solitons in shallow water in the case of a plane fluid surface /3/, but 

they have a number of peculiarities that are associated with the rotation of the fluid. An 

important property of the centrifugal solitons, as can be seen from (3.5) and the assumption 

about the direction of the vorticity of the flow (it determines the sign of the angular corn-- 

ponent of the vector potential), is its left-hand screw character: the directions of the 

angular momentum and of the soliton velocity are opposite to each other. 

Eq.(3.4) can be obtained from the Boussinesque equation 

!)ll = c,,E (II + /i-'l)2 -t h'lli;);z 

using the change of variables 5 L zm;-c,t. r--- -it (t:el)and discarding terms of order e2. This 
admits of a solution in the form of two solitarywavesthat are described by the equation 

,, I,” sech2 Iv’“’ ‘s’l”h-3 (2 + 41 

and propagate towards each other along the z axis with velocity c = c~I/I~L~/,TJ,~-', where one of 

the waves is left-handed and the other is right-handed. The transformation t= --ric signifies 

a time delay and is equivalent to assuming that the velocity of the forward motion of the 

liquid is small. An increase in this velocity, as is clear from the exposition above, is 

associated with the transition to a regime of preferential excitation of the left handed 

solitary wave described by the Korteveg-de Vries equation which propagates in the direction 

of the fluid flow in the case of a left-handed flow and in the opposite direction in the case 

of a right-handed flow. 
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